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Abstract. We propose a new algorithm for dynamic lot size models (LSM) in which production and 
inventory cost functions are only assumed to be piecewise linear. In particular, there are no 
assumptions of convexity, concavity or monotonicity. Arbitrary capacities on both production and 
inventory may occur, and backlogging is allowed. Thus the algorithm addresses most variants of the 
LSM appearing in the literature. Computational experience shows it to be very effective on NP-hard 
versions of the problem. For example, 48 period capacitated problems with production costs defined 
by eight linear segments are solvable in less than 2.5 minutes of Vax 8600 cpu time. 
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1. lnWoducfion 

The single item dynamic lot size model (LSM) can be described as follows. For a 
finite time horizon T, demand for a single commodity of each production period is 
known. These demands may be satisfied by productions in the current or future 
periods, by inventories from previous periods, or by purchases from outside 
suppliers. There may be certain kinds of capacity restraints on production, 
inventories or purchases. We consider costs which are incurred by producing 
products, purchasing products, or holding inventories. Here the holding costs may 
occur because of either positive or negative inventory, with the latter representing 
backlogging. The LSM seeks a feasible production plan with the total cost as 
small as possible. 

In this paper, we propose a dynamic programming algorithm for dynamic lot 
size models where the production and inventory cost functions are only assumed 
to be piecewise linear. In particular, there are no assumptions of convexity, 
concavity or monotonicity. Thus the algorithm addresses most variants of the 
LSM appearing in the literature. 

The literature of the LSM originates with Wagner and Whitin (1958) who 
considered models with fixed setup costs and linear holding costs. There was no 
capacity constraint in their original model and backlogging was not allowed. They  
gave an O(T 2) dynamic programming algorithm. Zangwill-(1966) provided a 
network approach (minimal cost network flow problems) for the LSM with 
concave cost functions, and later included backlogging in this model. 

Florian and Klein (1971) characterized some properties, which relate to 
regeneration points, of the optimal solutions for the LSM with concave cost 
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functions and with capacity on production. They proposed an O(T 4) algorithm for 
the case of constant production capacities. Love (1973) gave an O ( T  3) algorithm 
for certain problems with piecewise concave cost functions and with capacity on 
both production and inventory. Jagannathan and Rao (1973) have similar results 
to Love's, however the production cost was neither concave nor convex and the 
inventory cost was linear in their model. Swoveland (1975) extended Jagannathan 
and Rao's results to the cases with piecewise linear production and holding costs. 
Extensions of Florian and Klein's results are given by Lambrecht and Vander 
Eecken (1977) for Problems with arbitrary capacities and Lambert and Luss 
(1982) who studied the cases where capacities were multipliers of a constant 
value 

The basic capacitated LSM has received much attention because it is more 
tractable than other general models. In this model backlogging is not allowed, 
there are capacity constraints on production, holding costs are linear and 
production costs have a fixed-charged structure. Based on Bitran and Yanasse 
(1982), the notation for this problem is in a form of a/fl/y/8 where a,/3, 7 and 8 
represent setup cost, holding cost, production cost and capacity type, respectively. 
The values of these parameters may be G, C, ND, NI  and Z for arbitrary pattern, 
constant, non-decreasing, non-increasing and zero over production periods. When 
8 --o% it represents an uncapacitated LSM. The capacitated LSM, even in many 
special cases, is NP-hard (Florian et al., 1980; and Bitran and Yanasse, 1982). 
Several special cases with polynomial computational time have been discovered. 
Bitran and Yanasse (1982) showed that the time complexity of NI /G/NI /ND,  
NI /G /NI /C ,  C / Z / C / G  and N D / Z / N D / N I  are O(T4), O(T3), O(Tlog T) and 
O(T),  respectively. Chung and Lin (1988) improved the time complexity of 
N I / G / N I / N D  to O(TZ). Baker et al. (1978) proposed a tree-search solution 
algorithm for the general problem G / G / G / G  and Florian et al. (1980) provided a 
discrete dynamic programming algorithm with computational complexity 
O(DTCT) where D T and C T are cumulative demand and capacity, respectively. 
Kirca (1990) offered improvements to this discrete dynamic program. Chung et al. 
(1990) implemented a branch-and-bound algorithm for the problem G/G/NI /G .  

In addition to the above literature, certain variations of the LSM have been 
treated by other authors. For example, Lippman (1969) considered the LSM with 
the decision variables being the number of trucks to deliver orders. This idea was 
extended in the works of Sethi and Chand (1981) and Chand and Sethi (1983) for 
the capacitated LSM. Multi-source versions of the capacitated LSM are treated by 
Lee and Zipkin (1989) who allowed make-or-buy decisions and gave an O(T 5) 
algorithm for the case of equal production capacities. And Erenguc and Tufekci 
(1987) and Erenguc and Aksoy (1990) have implemented branch-and-bound 
algorithms for the capacitated LSM with piecewise linear production cost 
functions. 

Of the above papers, only a few report computational results with cpu times. 
To indicate the state-of-the-art, we cite those and quote the cpu times of the most 
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difficult problem in each: Kirca (1990) solved a G / G / G / G  problem with 18 
periods in 328 seconds on a CORDATA-ATP-8-Q20; Chung et al. (1990) solved 
one of their G / C / C / G  problems with 96 periods in 103.47 seconds on a VAX 
11/750; Erenguc and Tufekci (1987) solved a 10 period capacitated LSM with 4 
segments in the production cost functions in 4.65 seconds on an IBM3081/D32, 
and Erenguc and Aksoy (1990) solved a similar problem with 12 periods and 2 
segments in 0.284 seconds on an IBM3090/400. 

In Section 4 we give extensive computational results, including Vax 8600 cpu 
times, for the method of this paper. From these, it can be estimated that our cpu 
times for the above four cases would be less than 0.08, 2.91, 0.34 and 0.09 
seconds, respectively. The Vax 8600 is rated at 0.48 megaflops by Dongarra (1989) 
while the Vax 11/750, IBM 3081 and IBM3090 have ratings of 0.12, 2.1 and 16, 
respectively. (The CORDATA-ATP-8-Q20 is not rated.) Thus, even allowing for 
the different computers, we feel this study confirms the effectiveness of the 
method relative to those proposed thus far. 

Our algorithm is motivated by the approach of Wagelmans, Van Hoesel and 
Kolen (1992) who have recently improved the complexity of the original Wagner- 
Whitin (G/G/G/oo)  model to O ( T  log T). (Independently, Federgruen and Tzur 
(1991) and Aggarwal and Park (1990) have obtained the same complexity with 
different approaches.) It also represents a significant generalization and extension 
of our work on the capacitated LSM in Chen, Hearn and Lee (1994). 

The algorithm results from a continuous version of the standard dynamic 
programming model. The state variable, i.e., the cumulative production level, is 
treated as continuous. Under the assumption that the cost functions (production 
and inventory) are piecewise linear, we develop an efficient method to update the 
optimal value function. While the computational effort depends on the number of 
segments in the optimal value function, which can increase exponentially with T, 
extensive testing has shown the method to be very effective over a wide range of 
problem parameters. 

2. Notation, Formulation and Model Variants 

We need the following notation (for each period t) to describe the generic single 
item dynamic lot size model. 

d t = demand 
x, = production level 

D t = cumulative demand, that is, D t = E~= 1 d i 

X t = cumulative production, that is, X, = E~=I xi 
= the set of feasible production levels 

~,  = the set of feasible cumulative production levels 
Pt(x,) = cost function for producing x, units 

H,(Xt) = cost function for carrying X~ - D, units inventory at the end of 
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period t 

Without loss of generality, we assume that X 0 = 0, D O = 0 and X r = D r. The 
generic single item dynamic lot size model can be formulated as follows. 

�9 T 

(P1) Z* = min ~ (Pt(xt) + Ht(Xt) ) 
(Xl  . . . . .  XT) t = l  

such that 

S 0 = 0  , 

XT= D r , 

X t = X ~ _ I + x , ,  t = l , . . . , T  

x t ~ t ,  t = l , . . . , T  

X t e ~ , ,  t = l , . . . , T .  

Note  that the cost functions, Pt(xt) and/-/tO(,), as well as the feasible sets, 
and ~, ,  in the above model are not specified. By specifying these functions or 
sets, we can define variants of the single item dynamic lot size model. We need the 
following additional notation for these variants. 

C t 

W t 

c,= 
K,= 
Pt  =" 

fit = 

h =  

b t =  

~(x,) = 

capacity on production in period t. 
capacity O n inventory in per iod t. 
cumulative capacity on Production, that is, C t = El= 1 c r 
fixed set-up cost in period t. 
unit production cost in period t. 
unit purchasing cost in period t. 
unit holding cost in period t. 
unit backlogging cost in period t. 
O i f x ~ = O ,  or l i f x , > O .  

(M1) THE WAGNER-WHITIN MODEL 

In the Wagner-Whit in model,  the unit production cost is constant ( p , = p ) ,  
backlogging is not allowed, and there is no capacity restraint on production or 
inventory. Thus we define 

Pt(xt)  = K f i ( x t )  + p x t  

H t ( X , )  = h t (Xt  - D t )  

~ =  [0,~) 

~t = [D,, Drl 
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(M2) THE UNCAPACITATED DYNAMIC LOT SIZE MODEL 

The uncapacitated dynamic lot size model is similar to the Wagner-Whitin 
model except it has time varying unit production costs. That is, 

et(xt)  = Ktt~(xt) -t- ptxt 

(M3) THE DYNAMIC LOT SIZE MODEL WITH CAPACITY ON PRODUCTION 

The dynamic lot size model with capacity on production is similar to (M2) except 

= [o ,  c , ]  

~t  = [Dr, min{Dr, Ct)] 

(M4) THE DYNAMIC LOT SIZE MODEL WITH CAPACITY ON INVENTORY 

The dynamic lot size model with capacity on inventory is similar to (M2) except 

~ t  = [Dr, min{Dr; wt + Dr}] 

(Note that (M3) and (M4) can be combined to have capacities on both 
production and inventory.) 

(M5) THE DYNAMIC LOT SIZE MODEL WITH BACKLOGGING 

In models with backlogging, the costs of carrying negative inventories are 
included, and cumulative production level, X,, can be less than the cumulative 
demand in the previous period. For example, (M4) with backlogging is obtained 
with the following definitions: 

et(xt)  = gtt~(xt) .-I- ptxt 

[ b t ( D t - X , )  i f X t < O  t 
Ht(Xt)  = [h t (X ,  - Dt) i fX t  >! D t 

~ = [0, min(Dr,  w~ + Dr} ] 

(M6) THE MULTI-SOURCE DYNAMIC LOT SIZE MODEL 

The multi-source model means that there is more than one way to satisfy 
demands. For example, we may produce in-house or buy from outside suppliers. 
Or we may have several production lines with independent setups or different 
production costs. 

The difference between the models with single source and those with multiple 
sources is only in the production cost function. For instance, in the make-or-buy 
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cases, suppose that the in-house capacity is c t in period t, and let Pt, St be the unit 
production cost and the unit purchasing cost, respectively. There is a fixed charge 
for each case, say, K t is the setup cost for production and a t is the setup cost for 
purchasing in period t. Also, St is assumed to be greater than p,, and there exists 
et, a break-even point between producing and purchasing, that is, K~ + ptet = ott W 

S,e, and e, < c r Then the production cost function of this model is 

+ s:, 
P,(x,) = ~ Kt + PtX, 

[.K, + ptc, + a t + fit(x, - c,) 

if 0 ~< xt <- et 

if e t < X t ~ C t 

if C t < X t �9 

Notice that above function is not necessarily convex or concave. 

(M7) THE MULTI-WAREHOUSE DYNAMIC LOT SIZE MODEL 

in this model, the inventory is held in several warehouses. Each warehouse has its 
own capacity, and a fixed charge must be paid if it is used. Very general versions 
of this model can be constructed, but in the interest of brevity, we give one simple 
example. Suppose that there are n identical warehouses with capacity w t and 
setup cost W, in period t. Then the multi-warehouse dynamic lot size model has 
the following holding cost function. 

0 if X, - D, = 0 

H,(X,)= i W t + h t ( X , - D t )  i f ( i - 1 ) w t < X t - D t < ~ i w t ,  
i = l , . . . , n  

Notice that above function is also not necessarily convex or concave. 

3. A Continuous Dynamic Programming Approach 

Let Ft(Xt) be the optimal value function of (P1) considering only the first t 
periods with X, as the final cumulative production level, that is, 

t 

Ft(Xt) = xminx ~ (Pk(Xk) + Hk(Xk)) 
( 1 ..... t) k=1 

such that 

Xo=O 

X k = X k _ I  +X k ,  k = l , . . . , t  

X k E ~ k ,  k = l , . . . , t  

X k E ~  k ,  k = l , . . . , t - 1 .  

And define 
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Fo(Xo) = (0oo ifXo = 0 
otherwise. 

Then (P1) can be solved by dynamic programming with the following recursive 
equations: 

Ft(Xt) = H~(Xt) + min{Ft_l(Xt_l) + Pt(xt) lXt = Xt_ 1 + x, , 

X,-I ~ ~,-I ,  xt ~ ~t}, t ~-" 1 , . . . ,  T (1) 

and 

z *  = 

The conventional approach for (1) assumes that the state variable X t and the 
control variable x, are discrete. Thus, it yields a pseudo-polynomial time 
algorithm with computational complexity O(DrX ) where ~" is the number of total 
elements in ~ over all t. For instance, the complexity is O(DrCr)  for the 
problems in (M3). Since D r and ~" can be very large numbers, researchers usually 
see this approach only as a last resort. 

Our approach is different from the conventional one by treating X, and xt as 
continuous variables. Since X, is continuous, there are an infinite number of states 
in our approach. In order to resolve the difficulty incurred by infinite states, the 
following assumption is needed: 

ASSUMPTION. Pt(xt) and Ht(Xt) are piecewise linear functions with finitely 
many segments for  any t. 

Since all given cost functions are piecewise linear, it is reasonable to expect that 
Ft(Xt) is also a piecewise linear function for any t. The following theorem will be 
proven later. 

T H E O R E M  1. Ft(St) is a piecewise linear function with finitely many pieces for  
any t. 

Since Ft_l(St_l) is piecewise linear, its domain can be split into several intervals, 
say 

~t-1 = U o~(i) 
i 

such that, in each interval ~(i)t_l, gt_l(Xt_l) is only a line segment. In a similar 
way, the domain of Pt(xt) can also be split into several intervals, that is, 

] 
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such that, P,(x,) is only a single line segment in each interval ~ J ) .  
Now, consider minimizing in the right hand side o f ( l )  segment by segment 

instead of point by point. Define 

F}i,J)(St) = min(Ft_l (Xt_l )  + e t (x , ) Ig t  = S t_  1 -~- Xt , 

S t _ , E ~ } i ) _ l , X t E ~ } J )  } Vt, i , j .  (2) 

Therefore,  the recursive equations in (1) can be rewritten as 

F~(Xt) = Ht(Xt)  + min{F~i'J)(X~)IV/, j} t = 1 , . . . ,  T .  (3) 

The function value of F~i'J)(Xt) is infinite if X t is out of its domain. 
In the following sections we will show F~i'J)(Xt) for any i and j is a piecewise 

linear function, and it can be written in closed form. 
Given an ~ ~1 and an ~ / ) ,  suppose that 

li)l [a~ i),a~i)], 

~ J )  = [bii), b(i)] , 

and 

F,-~(X,-1) =R(0  +r(~ ' forXt-1 ~ / - ) 1  , 

Pt(xt) = P(J) + p(J)x, for x~ E ~ J ) .  

Then for each i, j, (2) becomes 

F~i'J)(Xt) = min{R (i) + r(i)Xt_l + P(J) + p(J)x,I 
X t = X t _  x + xt, al i) <~Xt. , <<-ali),b~ j) <~x, ~<b (j)} (4) 

We use a continuous version of the reaching concept (Denardo,  1982) to 
evaluate the above recursive equation, and say that X t can be reached from X,_~ 
if b~ j') ~X~ " -< ~(J) -- .~t_l ' . . .-~O2 . 

Consider the minimization in (4). Given an X t, after substituting Xt_ x = X t - xt 

or x t = X t - X ~ _ I ,  we are to minimize 

R (~ - (r (~ - p ( J ) ) x t  + P(J) + r (~  

o r  

R (i) + (r (i) - p(J))Xt_ 1 + p(J) +p(J)Xt  

over all possible production levels xt, or over all Xt_ 1 from which X t can be 
reached. So, if r (0 ~<p(J), it is optimal to make x t as small as possible, or to make 
Xt_  1 as large as possible. That is, x t = b ~  j) when X t ~[a~ 0 + b~ j), a(2 0 + b~J)]; and 
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X t_l=a~ i) when X t ~  [a(2i)+ vlh(J), u 2-(/)+ b~J)]. On the other hand, in case of 
r(i) >pO),  xt should be as large as possible and Xt-1 as small as possible. That is, 
Xt_ l=a~  i) when XtE[a~ 0 +b~J),a~ i)+b~"]; and x,=b  n when Xte[a  ~ + 
bO) ~(o+ b(2J)] The above discussion can be summarized in the following 2 'Or2 

algebraic expressions: 
If r (~ <~p(J), t h e n  

fR(i) _ (r(i) _pO))b~J) + pO) + r(i)xt ,  
l f n r  rl (i) 4- h ( ] )  =~ V ~ . ( i )  4- h ( j )  ' 

~ 1  - - ~ 1  " ~ 2 x t " ~ { 4 2  - - v 1  
F}i'J)(Xt) / R ( i )  +(r ( i ) -p ( J ) )a ( i )  + p(Y) +pO)X, ,  

| f o r  a (i) 4- h ( j )  / " V  =~ ~ ( i )  4- h ( j )  

otherwise, 

fR(O + (r(i) _ pO))a~O + pO) + pO)Xt ' 
| ~ e o r  ,7(i) 4- h ( J )  ~ y ~-~n( i )  4- h ( j )  

12(i , j) l .  vd..X _ J . . . .  1 - -  ~ 1  " ~ ' ~ t  " " ~ 1  - -  " 2  

" ,  t"~t) - IR(i)  _ (r(i) _pO))b<J) + pO) + r ( i ) x t ,  
/ f a r  a (i) 4- h ( j )  / v ~<: ~ ( i )  4- h ( j )  
k ' ~ - ~ l  - - ~ 2  ~ ' z x t " ~ u 2  - - ~ 2  , 

or in another form, if r (0 ~<pU), then 

(J) (J) fFt_l(Xt -- b~ ) + Pt(b~ ) ,  
l f o r  ,~(i) 4- h(J) ~<Y <~ ,~(i) 4- hU) 

~ ' v ~ . ~ l  - -  ~1  ~ ~xt ~2  - -  V l  
F}i'J)(Xt) = I lz r + e (X a (i)~ 

] * t - l k t t 2  ) t L, t - -  2 ) '  

[ ~ C o r . ( i )  4- h ( j )  . i  V ~ . ( i )  4- h ( j )  

(5) 

otherwise, 

fFt.l(a~ i)) + Pt(Xt-a~i ) ) ,  
J for  a~ ") + b~ j) <<- X t <~a~ i) + b~ j) 

F}"J)(X,) =/F t_I (Xt  - b(2J)) + P,(b~J)), 

( f o r  a~ i) +b(2 j) < X t <~ a(2 0 + b (2 j) " 

(6) 

We interpret the above segments as follows. The first segment of (5) and the 
second segment of (6) are created by fixing the production levels at b~ j) and b(2 j), 
respectively. On the other hand, the second segment of (5) and the first segment 
of (6) are created by fixing the cumulative production level in period t -  1, Xt_ 1, 
at a(2 i) a n d  a~ i), respectively. 

We have shown that F~i'J)(Xt) in (3) for any i and j is a piecewise linear 
function with two segments. Therefore Ft(Xt) in (3) can be computed i n  two 
steps: first, evaluating the minimum of F~id)(X,) over all i, j, then adding this 
result to Ht(X,). 
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Y(2) 

rO) 
r(a) 

f I I I 
X(O) X(1 )  X(2)  X(3 )  

Y 

l u 
Ob) 

I I f I I I 
x(o) I x(~) x(2)~ x(a) 

(lc) 

iTig. 1. 

y 
I I I I I 

x(o) xo) x(2)x(a) x(41 
(ld) 

The first step is illustrated in Figure 1. Let there be in total s line segments from 
all of the F~i'J)(Xt) over all i and j. Denote L k as the  kth line segment for 
1 ~< k ~ s  (taken in any order). Any Lt k is uniquely defined by (l, u, p, y) = (lower 
bound, upper bound, slope, intercept); see Figure l(b). 

Starting with F~I) (X t )  = L~ for X, E [l, u] f3 ~,, the function F}S)(Xt) for X t ~ ~t 
can be obtained by a segment by segment update procedure. In Figure (la), F} k-l) 
represents F, after ( k -  1) updates. It is defined by its breakpoints X(0), X(1), 
X(2), X(3) and by its segments which have slopes P(1), P(2), P(3) and intercepts 
Y(1), Y(2), Y(3). F} k-l) and L, k are both included in Figure (lc), then F~ k) is 
obtained by moving through the breakpoints, including l and u, and comparing 
the function values with those of the segment. The result is given in Figure (ld). 

The second step is to sum two piecewise linear functions, Ht(Xt) and F}S)(Xt). 
After sorting all the breakpoints of these two functions, there is only a single 
segment for each function between two such consecutive breakpoints. Therefore, 
the summation of these two functions can be calculated easily to give F,(X,). 

For a detailed discussion of evaluating lower envelopes and recovering an 
optimal solution for the model (M3), see Chen et al. (1994), which contains a 
pseudocode and a numerical example. 

The computational effort of our approach is a function of the time horizon, T, 
the number of segments in the cost functions and the number of segments in the 
optimal value functions. Although the number of segments may increase at an 
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exponential rate with T theoretically, it need not be more than D r in practice 
since we can always delete segments between two consecutive integer values of X t 
without losing the optimal solution. So, our approach can not be worse than the 
conventional discrete approach for problems with integer data. 

We conclude this section by proving Theorem 1. 

Proof of  Theorem 1, The theorem will be proven by mathematical induction. 
When t = 0, Fo(Xo) is a piecewise linear function with one segment (the origin) by 
definition. Now assume that F t_l(Xt_l) is a piecewise linear function with finite 
segments for t I> 1. From (3), formulas (5), (6) and the assumption that Ht(Xt) is 
a piecewise linear function with finite segments, it can be seen that Ft(Xt) is also a 
piecewise linear function with finite segments. �9 

4. Computational Experience 

In this section we examine the efficiency of our approach on the capacitated LSM 
with multiple piece production cost functions. Suppose there are M pieces in the 
production cost function of each period. There is a fixed charge (setup cost), a 
slope (unit production cost), and a capacity (length of such piece) for each piece. 
Linear holding costs are considered in this model and no backlogging is allowed. 

We modified the problem pattern in Baker et al. (1978) to randomly create test 
problems. 

The demand is given in a pattern as follows. 

dr= 200 + o'zt + a sin [ 2--~-~ (t + b/4)] (7) 

where 

o" = standard error of demand, 
z t = i.i.d, standard normal random deviates, 
a = amplitude of the seasonality component, 
b = length of seasonal cycle in periods. 

Five problems were created in each of the following four combinations: (1) 
or=67, a = 0 ,  (2) o'=237, a = 0 ,  (3) or=67, a=125,  b = T  and (4) o-=67, 
a=125 ,  b=12 .  

We tested the problems with T E {12, 24, 48, 96,} and M ~ {1, 2, 4, 8}.The unit 
holding cost, h, for each t, is uniformly distributed between 0.5 and 1.5. The unit 
production cost, p~J) for each period t and each piece j, is uniformly distributed 
between 10 and 30. The capacity for each period and each piece is uniformly 
distributed in (0.5C/M, 1.5C/M) where C E (400,800, 1200, 1600}. These aver- 
age total capacities C satisfy (average) demand of 2, 4, 6 and 8 periods, 
respectively. The corresponding setup costs are K = 400, 1600, 3600, 6400 which 
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Table I .  Maximal segments in Ft(Xt) over time horizon 

T 12 24 48 96 

2 r 4.1 x 103 1.7 X 107 2.8 X 10 TM 7.9 X 1028 
actual number 607 1704 2988 6102 

come from the continuous E O Q  (economic order  quantity) model.  The  setup cost 

for each period and each piece is uniformly distributed in (0.5K/M, 1.5K/M). 
A total of 5120 feasible problems were created and tested. The program of our 

algorithm is coded in Fortran and run on a VAX 8600, 
We are interested in both cpu t ime and the number  of segments of the optimal 

value function. The results are listed in two tables: one for cpu t ime and the other 

for the maximal number  of segments. Since these tables are large, they are placed 
in the Appendix.  Each cell in these tables represents 20 different demands  of the 

corresponding category. Both average and the maximal (in the parentheses) 
values of the 20 problems are listed. Note  that the tables show that  these 
computat iona ! results are very stable since the maximal values are within twice 

the average values in almost every Case. 
As expected,  the number  of  segments of the optimal value function is very 

small. Even though this number  can b e more  than '2 r for a T per iod problem,  it is 

only a fract ion of its theoretical  value as shown in Table  I. The fact that  the 

number  of segments is small ensures that problems as large as 96 periods and 8 
segments in the production cost function can be solved in less than 100 K bytes of 

memory  since about  10 bytes are required for each. 
The results in the Appendix also show that the problems with smaller setup 

costs are easier for our algorithm than those with larger setup costs. On the other  
hand, the problems with less capacity are harder than those with more  capacity. 
Out  of the 16 possible combinations of K and C, the case with K = 6400 and 
C = 400 is the hardest. Table I I  lists the average cpu t ime of this hardest  case. In 
the case of T = 96 and M = 1, it takes only 1.97 second on average to find the 

optimal solution. We feel these results demonstrate  the effectiveness of  the 
method relative to the prior literature. For example,  the largest p rob lem 
previously solved to optimality,  with M = 1, on ly  has T = 18 (Kirca, 1990). 

Finally, the increases in the cpu times in Table II  are given in Table  I I I  and IV 

as a function o f T  and M, respectively. 
In these tables an entry of 8 indicates a cubic growth rate. The entries in the 

Table II. Average cpu time* (K = 6400, C = 400) 

T = 12 T = 24  T = 48 T = 96 

M = 1 0.01 0.06 0.40 i.97 
M = 2 0.05 0.27 1.84 12.49 
M = 4 0.19 1.59 9.95 67.76 
M = 8 1.38 10.89 75.69 512.44 

*seconds on Vax 8600. 
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TablelII. Increasesin ~ut imewithrespect to  T 

T 12~24  ~ 4 8  4 8 ~ 9 6  

M = I  6.0 6.7 4.9 
M = 2  5.4 6.8 6.8 
M = 4  8.4 6.3 6.8 
M = 8  7.9 7.0 6.8 

TableIK Increasesincputimewithrespeato M 

M T=12  T = ~  T=48  T=96  

1 ~ 2  5.0 4.5 4.6 6.3 
2 ~ 4  3.8 5.9 5.4 5.4 
4 ~ 8  7.3 6.8 7.6 7.6 

two tables range from 3.8 to 8.4, demonstrating that the growth rates range from 
1.93 to 3.07. Thus it is reasonable to claim that, for data similar to ours, the cpu 
time increases at a rate which is approximately cubic in either T or M. 

5. Conclusions 

In summary, the method proposed in this paper applies to many NP-hard versions 
of the dynamic lot size model and the computational results show that it is highly 
effective. Computational effort only grows at a cubic rate in either T or M for the 
problems tested. This means that the algorithm can be used as a subproblem in 
decomposition approaches to multi-item problems- this is one extension we are 
currently exploring. 

The computer code used in our experiments is available for research purposes 
from the authors. The distribution disk includes a code for generation of test data. 
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Appendix 

Table A.1. Cpu time (seconds on a VAX 8600) 

K C T =  12 T=  24 

M = I  M = 2  M = 4  M = 8  M = I  M = 2  M = 4  M = 8  

400 400 0.01 a 
(0.01) b 

800 0.01 
(0.01) 

1200 0.00 
(0.01) 

1600 0.00 

0.02 0.09 0.33 0.03 0.11 0.39 1.68 
(0.04) (0.12) (0.49) (0.05) (0.14) (0.54) (2.37) 
0.01 0.05 0.17 0.02 0.06 0.20 0.83 

(0.03) (0.07) (0.23) (0.03) (0.07) (0.24) (1.05) 
0.01 0.03 0.11 0.01 0.04 0.14 0.51 

(0.02) (0.05) (0.16) (0.02) (0.06) (0.19) (0.67) 
0.01 0.02 0.08 0.01 0.03 0.10 0.36 
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(0.01) (0.02) (0.04) (0.10) (0.01) (0.04) (0.14) (0.46) 

1600 400 0.01 0.03 0.13 0.68 0.04 0.18 0.83 4.66 
(0.02) (0.05) (0.25) (1.16) (0.06) (0.26) (1.19) (7.03) 

800 0.00 0.02 0.07 0.32 0.02 0.09 0.42 1.96 
(0.01) (0.04) (0.11) (0.48) (0.04) (0.13) (0.67) (2.52) 

1200 0.00 0.01 0.05 0.18 0.01 0.05 0.22 1.04 
(0.02) (0.02) (0.06) (0.27) (0.02) (0.08) (0.31) (1.66) 

1600 0.01 0.01 0.03 0.12 0.01 0.04 0.13 0.62 
(0.01) (0.02) (0.06) (0.17) (0.02) (0.06) (0.18) (0.81) 

3600 400 0.01 
(0.02) 

800 0.01 
(0.02) 

1200 0.01 
(0.02) 

1600 0.00 
(o.o1) 

0.04 0.20 0.90 0.05 0.23 1.03 8.29 
(0.06) (0.33) (1.51) (0.08) (0.36) (1.84) (18.87) 
0.02 0.09 0.37 0.03 0.13 0.60 3.64 

(0.04) (0.18) (0.60) (0.05) (0.20) (0.93) (6.37) 
0.02 0.06 0.22 0.02 0.07 0.35 1.46 

(0.03) (0.10) (0.30) (0.03) (0.11) (0.49) (2.00) 
0.01 0.04 0.15 0.01 0.05 0.20 0.90 

(0.02) (0.07) (0.24) (0.03) (0.08) (0.29) (1.29) 

6400 400 0.01 0.05 
(0.02) (0.09) 

80O 0.01 0.03 
( 0 . 0 2  (0.04) 

1200 0.01 0.01 
(0.02) (0.03) 

1600 0.00 0.01 
(0.01) (0.02) 

a :  a v e r a g e ;  b :  w o r s t  c a s e .  

T a b l e  A 1 .  C p u  t i m e  ( s e c o n d s  o n  a 

0.19 1.38 0.06 0.27 1.59 10.89 
(0.34) (3.93) (0.08) (0.44) (2.71) (39.42) 
0.10 0.54 0.04 0.16 0.80 4.10 

(0.16) (1.11) (0.06) (0.27) (1.41) (5.97) 
0.06 0.29 0.02 0.09 0.42 2.06 

(0.10) (0.43) (0.04) (0.17) (0.70) (3.62) 
0.04 0.16 0.02 0.06 0.28 1.29 

(0.07) (0.25) (0.03) (0.08) (0.43) (1.98) 

V A X  8 6 0 0 )  ( c o n t i n u e d )  

K C T=48  T=96  

M = I  M = 2  M = 4  M = 8  M = I  M = 2  M = 4  M = 8  

400 400 0.11 a 0.41 1.64 
(0.13) t' (0.51) (1.94) 

800 0.07 0.25 0.89 
(0.10) (0.35) (1.07) 

1200 0.04 0.16 0.59 
(0.09) (0.21) (0.78) 

1600 0.04 0.12 0.43 
(0.07) (0.16) (0.52) 

7.15 0.42 1.64 7.26 32.72 
(8.94) (0.55) (1.99) (8.11) '  (38.85) 
3.73 0.29 1.05 3.97 16.47 

(4.29) (0.33) (1.22) (4.86) (20.30) 
2.23 0.18 0.68 2.59 9.92 

(2.85) (0.22) (0.90) (3.05) (12.87) 
1.67 0.13 0.47 1.80 6.95 

(1.96) (0.18) (0.55) (2.56) (7.93) 

1600 400 0.19 0.82 4.38 
(0.31) (1.01) (6.16) 

800 0.11 0.41 1.73 
(0.16) (0.55) (2.17) 

1200 0.06 0.24 0.99 
(0.09) (0.29) (1.17) 

1600 0.05 0.17 0.67 
(0.08) (0.23) (0.80) 

28.27 0.79 3.60 20.15 128.24 
(44.79) (1.07) (4.92) (26.19) (171.49) 
9.47 0.44 1.72 8.31 46.71 

(13.70) (0.51) (2.28) (10.23) (63.35) 
4.45 0.26 1.04 4.22 22.84 

(5.88) (0.34) (1.23) (5.01) (33.48) 
2.95 0.19 0.70 2.94 13.93 

(3.92) (0.25) (0.84) (3.51) (18.09) 

3600 400 0.28 
(0.41) 

800 0.15 
(0.23) 

1200 0.08 
(0.13) 

1600 0.05 
(0.07) 

1.24 8.38 
(1.70) (13.07) 
0.65 3.52 

(0.90) (5.76) 
0.36 1.61 

(0.48) (1.96) 
0.23 0.99 

(0.34) (1.26) 

51.62 1.37 7.18 40.48 334.90 
(102.52) (1.89) (9.51) (58.75) (559.83) 
19.91 0.65 3.04 16.96 119.41 

(29.38) (0.78) (3.63) (26.28) (156.69) 
10.90 0.37 1.64 7.74 51.35 

(14.73) (0.47) (2.37) (9.33) (63.94) 
5.35 0.25 1.02 4.67 28.29 

(7.80) (0.31)  (1.24) (5.54) (36.93) 

64o0 400 0.40 
(0.65) 

800 0.19 
(0.27) 

1200 0.10 
(0.16) 

1600 0.07 
(O.lO) 

1.84 9.95 
(2.54) (23.88) 
0.82 4.98 

(1.07) (7.14) 
0.48 2.25 

(0.66) (2.84) 
0.30 1.48 

(0.47) (2.34) 

75.69 1.97 12.49 67.76 512.44 
(145.98) (2.91) (27.91) (94.17) (766.11) 
39.08 0.93 4.88 31.11 210.95 

(59.82) (1.19) (7.73) (45.10) (281.85) 
18.73 0.50 2.42 12.43 88.28 

(38.88) (0.69) (3.14) (17.62) (112.00) 
8.68 0.30 1.45 7.76 50.86 

(11.49) (0.40) (1.87) (9.50) (62.02) 

a :  a v e r a g e ;  b :  w o r s t  c a s e .  
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Table A2. Maximal segments of F,(X,) over time horizon 

K C T =  12 T = 2 4  

M = I  M = 2  Mffi4 M = 8  M = I  M = 2  M = 4  M = 8  

40O 400 12.4 a 26.9 55.1 102.2 22.6 53.9 106.4 216.3 
(22)/' (41) (79) (133) (34) (74) (144) (271) 

800 8.4 16.1 31.0 56.5 15.9 30.5 59.3 188.9 
(13) (21) (41) (85) (23) (43) (74) (144) 

1200 6.4 11.9 21.7 38.5 11.1 22.0 43.8 79.8 
(9) (17) (29) (55) (14) (27) (66) (103) 

1600 5.6 8.8 15.6 28.3 10.1 17.1 32.2 58.5 
(8) (12) (22) (35) (14) (21) (42) (77) 

1600 400 15.8 38.1 81.3 178.8 33.5 83.2 203.9 429.8 
(21) (63) (124) (273) (59). (121) (295) (565) 

800 8.8 19.0 40.8 94.7 21.3 45.0 115.6 217.8 
(11) (26) (62) (131) (35) (74) (176) (300) 

1200 7.7 13.8 30.0 56.7 9.6 30.1 65.1 136.7 
(I1) (19) (44) (86) (20) (46) (92) (220) 

1600 5.9 10.6 21.1 37.2 11.3 23.0 45.7 92.0 
(8) (15) (40) (53) (17) (34) (73) (117) 

36OO 400 16.7 41.0 114.8 217.0 43.7 110.4 244.9 608.7 
(25) (74) (185) (308) (76) (191) (401) (1000) 

800 10,4 22.7 56.0 101.3 26.5 61.0 151.6 342.6 
(15) (36) (107) (153) (42) (133) (191) (575) 

1200 7.5 16.6 34.3 69.0 16.6 37.0 98.6 178.1 
(14) (28) (60) (95) (27) (54) (141) (251) 

1600 5.9 11.6 25.1 49.5 12.4 28.8 60.3 122.9 
(9) (24) (53) (71) (18) (42) (79) (183) 

640O 400 17.9 48.3 107.5 293.6 49.8 129.3 337.1 714.2 
(28) (79) (177) (607) (83) (207) (580) (1704) 

800 10.4 24.0 58.3 134.7 28.9 73.3 178.5 350.3 
(16) (40) (90) (229) (54) (109) (288) (436) 

1200 7.5 16.4 35.7 90.1 18.3 42.7 108.5 222.1 
(12) (25) (56) (186) (28) (81) (167) (343) 

1600 5.7 11.9 26.3 53.8 14.1 27.6 77.0 159.3 
(8) (18) (45) (86) (21) (36) (127) (256) 

a: average; b: worst case. 

Table A2. Maximal segments of F~(Xt) over time horizon (continued) 

K C T=48 T=96 

M = I  Mffi2 M = 4  M = 8  M = I  M = 2  M = 4  M = 8  

400 400 40.5" 98.2 212.1 405.6 83.5 190.8 428.8 841.4 
(57) b (129) (253) (513) (117) (234) (491) (937) 

800 28.1 64.2 118.9 235.1 57.0 118.9 244.8 462.0 
(35) (107) (156) (295) (74) (142) (275) (571) 

1200 20.4 43.0 83.9 158.3 37.0 81.8 168,4 303.8 
(31) (57) (111) (196) (47) (99) (193) (376) 

1600 16.7 32.5 63.7 128.0 28.8 60.7 124.7 228.1 
(23) (50) (83) (163) (36) (73) (162) (264) 

1600 400 78.5 191.2 460.6 1037.7 153.3 389.5 937.7 2115:8 
(124) (250) (635) (1562) (209) (508) (1167) (2846) 

800 41.0 102.7 216.1 449.0 85.7 199.6 439.8 936.0 
(56) (152) (273) (595) (111) (269) (641) (1173) 

1200 28.5 61.5 127.3 280.5 58.0 121.8 265.0 559.0 
(48) (77) (169) (348) (76) (151) (322) (764) 

1600 21.3 47.0 97.1 203.1 44.3 87.2 196.9 372.7 
(38) (70) (113) (276) (61) (103) (244) (462) 

3600 400 102.7 271.8 727.4 1494.4 243.3 682.0 1537.9 3692.5 
(150) (409) (941) (2323) (356) (916) (2179) (4879) 

800 56.0 140.8 374.5 733.8 121.3 329.9 775.2 1793.6 
(90) (191) (553) (988) (151) (419) (1129) (2157)" 

1200 35.5 91.3 206,3 490.2 75.7 193.4 430.6 947.3 
(57) (128) (248) (633) (101) (270) (528) (1208) 
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1600 25.3 61.3 139.4 310.6 57.2 124.7 289.7 639.6 
(43) (84) (200) (419) (70) (166) (372) (831) 

6400 400 156.6 
(262) 

800 75.2 
(105) 

1200 44.8 
(68) 

1600 33.5 
(54) 

384.0 795.0 1922.3 363.0 1046.9 2230.0 4483.7 
'(530) (1435) (2988) (516) (2039) (2944) (6102) 

176.9 463.1 1113.1 179.4 474.0 1145.6 2533.0 
(239) (616) (1586) (224) (691) (1458) (3671) 
112.6 257.9 641.0 101.3 260.0 582.4 1401.8 

(139) (337) (984) (167) (359) (830) (1744) 
74.7 193.1 389.1 68.4 180.4 411.1 968.1 

(103) (258) (531) (90) (232) (520) (lZSl) 

a: average; b: worst case. 
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